Bitcoin Market

Bitcoin Market

You are not logged in.

#1 2020-09-06 15:03:28

VernerFak
Member
From: Cameroon
Registered: 2020-08-24
Posts: 46

Login Join now


Posted on Thursday January 01, 1970


Posted on Thursday January 01, 1970


Posted on Thursday January 01, 1970


Posted on Thursday January 01, 1970


Posted on Thursday January 01, 1970


Posted on Thursday January 01, 1970


Posted on Thursday January 01, 1970


Posted on Thursday January 01, 1970


Posted on Thursday January 01, 1970

Further details of our pocket book of challenges can be found by clicking.
The playing board of  is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.
For example, 7 can be made by 2+1+1+1 (or 4+1+1+1).
Using 2, 5 and 10 once each, with + –  ÷ available, .

Which FOUR numbers is it possible to make from the list below

nswers can be found.
Click  for details of online maths tuition.
The playing board of  is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.
For example, 7 can be made by 2+1+1+1 (or 4+1+1+1).
Using 2, 5 and 10 once each, with + –  ÷ available, which FOUR numbers is it possible to make from the list below.
nswers can be found.
Click  for details of online maths tuition.
h    The playing board of  is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.
For example, 7 can be made by 2+1+1+1 (or 4+1+1+1).
Using 2, 5 and 10 once each, with + –  ÷ available, .

Which are the only THREE numbers it is possible to make from the list below

nswers can be found.
Click  for details of online maths tuition.
The playing board of  is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.
For example, 7 can be made by 2+1+1+1 (or 4+1+1+1).
Using 2, 5 and 10 once each, with + –  ÷ available, .

Which are the only TWO numbers it is possible to make from the list below

nswers can be found.
Click  for details of online maths.
3  (3÷3) – (3÷3) – (3÷3)  =  1.
(3+3)  (3÷3)  (3÷3) ÷ 3 =  2.
and so on.
The playing board of  is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.
For example, 7 can be made by 2+1+1+1 (or 4+1+1+1).
Using 2, 5 and 10 once each, with + –  ÷ available, which are the only TWO numbers it is possible to make from the list below.
nswers can be found.
Click  for details of online maths tuition.
The playing board of  is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.
For example, 7 can be made by 2+1+1+1 (or 4+1+1+1).
Using 2, 5 and 10 once each, with + –  ÷ available, .

Which THREE numbers are NOT possible to make from the list below

nswers can be found.
Click  for details of online maths tuition.
The playing board of  is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.
For example, 7 can be made by 2+1+1+1 (or 4+1+1+1).
Using 2, 5 and 10 once each, with + –  ÷ available, which are the only TWO numbers it is possible to make from the list below.
swers can be found.
Click  for details of online maths tuition.
Following on from , here’s another one of the unique Keith Number challenges. This was made famous by Mike Keith and if you like playing around with numbers, you’ll love this fun concept.
The playing board of  is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.
For example, 7 can be made by 2+1+1+1 (or 4+1+1+1).
Using 2, 5 and 10 once each, with + –  ÷ available, which are the only TWO numbers it is possible to make from the list below.
nswers can be found.
Click  for details of online maths tuition.
19 [Note:  (72)+5 = 19 and  (2)+5 = 19 counts as just ONE way.]    The playing board of  is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.
For example, 7 can be made by 2+1+1+1 (or 4+1+1+1).
Using 2, 5 and 10 once each, with + –  ÷ available, which are the only THREE numbers it is possible to make from the list below.
nswers can be found.
Click  for details of online maths tuition.
5.
5.
4.
The playing board of  is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.
For example, 7 can be made by 2+1+1+1 (or 4+1+1+1).
Using 2, 5 and 10 once each, with + –  ÷ available, .

Which are the SIX numbers it is possible to make from the list below

nswers can be found.
Click  for details of online maths tuition.
September 2020      M  T  W  T  F  S  S                             456      78910111213      14151617181920      21222324252627      282930.
Search for:.

Offline

Board footer

Powered by FluxBB